
Suggested solution of Midterm

1. (a) Suppose {In}∞n=1 is a sequence of closed and bounded interval such that In+1 ⊂ In
for all n. Then

∞⋂
n=1

In 6= ∅.

(b) Suppose {xn}n∈N is a bounded sequence. Let M > 0 such that |xn| ≤ M . When
k = 1, define a1 = −M, c1 = M , b1 = (a1 + c1)/2 and I1 = [a1, c1]. Suppose
we have defined ak, ck such that Ik = [ak, bk] contains infinity many xn. Denotes
bk = (ak + ck)/2. Either [ak, bk] or [bk, ck] contains infinity many xn. If [ak, bk] does,
define Ik+1 = [ak, bk], ak+1 = ak and ck+1 = bk. Otherwise, we define Ik+1 = [bk, ck],
ak+1 = bk and ck+1 = ck.

By construction, Ik is a sequence of nested interval which is bounded and closed. By
Nested interval theorem,

{x̄} =
∞⋂
n=1

In.

since we have

|In| =
M

2n−2
→ 0.

On the other hand, each Ik has infinity many element from {xn}. Therefore, we can
pick a sequence xnk

∈ Ik. It converges to x̄ since

|xnk
− x̄| ≤ |Ik| → 0.

(c) If {xn} is cauchy, then for all ε > 0, there is N such that for all n,m ≥ N ,

|xn − xm| < ε.

In particular, take ε = 1, we have for all n > N1,

|xn − xN | ≤ 1.

And hence {xk} is a bounded sequence. By above, there is x̄ and a subsequence
{xnk

}∞k=1 such that xnk
→ x̄ ∈ R. Hence for ε > 0, there is N such that for all

m, k > N , (nm ≥ m)
|xnm − xk|, |xnm − x̄| < ε/2.

Hence it implies
|xk − x̄| < ε.

If xn → x̄, then for all ε > 0, there is N such that for all n > N , |xn − x̄| < ε/2.
Hence, for all m,n > N ,

|xn − xm| ≤ |xn − x̄|+ |x̄− xm| < ε.

(a) By Q1, if
∑∞

n=1 |an| converges, then for all ε > 0, there is N such that for n,m > N ,

m∑
k=n

|ak| < ε.

Hence, it follows from the triangle inequality that∣∣∣∣∣
m∑
k=n

ak

∣∣∣∣∣ ≤
m∑
k=n

|ak| < ε.

By Q1 again (cauchy criterion), {
∑N

k=1 ak}N is convergent.
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(b) By Q1 (cauchy criterion), For all ε > 0, there is N such that for all m > n > N ,∑m
k=n yk < ε. As 0 ≤ xk ≤ yk,

m∑
k=n

xk < ε.

Thus, {sn =
∑n

k=1 xk} is cauchy implying the convergence.

2. (a) Denote r = (1 + a)−1 where a > 0. Using (1 + a)n ≥ 1 + na, we have

rn =
1

(1 + a)n
≤ 1

an
.

Let ε > 0, then for all n > N =
[
1
aε

]
+ 1,

rn ≤ 1

an
< ε.

(b) Denote r
1
n = 1

1+σn
. Then

r =
1

(1 + σn)n
≤ 1

1 + nσn
.

Hence,

σn ≤
1− r
rn

.

And hence for ε > 0, for all n > N =
[
1−r
rε

]
+ 1, we have∣∣∣∣ 1

1 + σn
− 1

∣∣∣∣ =
σn

1 + σn
≤ 1− r

rn
< ε.

3. (a) ∣∣∣∣ x+ 1

x2 − 3
− 3

∣∣∣∣ = |x− 2|
∣∣∣∣3x+ 5

x2 − 3

∣∣∣∣ .
Let ε > 0 be given, then we may choose δ = min{0.1, ε/100}. Then for all 0 <
|x− 2| < δ,

|x− 2|
∣∣∣∣3x+ 5

x2 − 3

∣∣∣∣ ≤ 100|x− 2| < ε.

(b) Let M > 0, pick δ = min{1, 5M−1}. Then for all 3− δ < x < 3,

x2 + 1

x− 3
≤ 5

x− 3
< −M.

4. By assumption, take ε = 1, we obtain δ1 so that for all x ∈ A where 0 < |x− c| < δ1, for
i = 1, 2,

|fi(x)| ≤ |fi(x)− li|+ |li| < |li|+ 1.

Denote M = |l1|+ |l2|+ 2. For ε > 0, there is δ2 = δ2(ε,M) such that for all x ∈ A where
0 < |x− c| < δ2, we have

|fi(x)− li| <
ε

4M
.

Hence, for the same ε > 0, if x ∈ A where 0 < |x− c| < min{δ1, δ2}, we have

|f1f2 − l1l2| ≤ |f2(x)||f1(x)− l1|+ |l1||f2(x)− l2|
≤M |f1(x)− l1|+M |f2(x)− l2|

≤ ε

2
.


